Critmag

Home » Posts tagged 'Etna'

Tag Archives: Etna

Advertisements

Cumulate piles are modified by reactive liquid flow

The Rum layered intrusion testifies to modification by injection of hot magma and remobilization of pre-existing cumulate rocks.

The Isle of Rum in the Inner Herbrides of Scotland is a classic and much-studied example of an igneous layered intrusion. Dated at 60 Ma, it’s emplacement was related to the development of the proto-Icelandic plume.

New work by Leuthold et al. focusses on a particular layer within the intrusion, ‘Unit 9’, which shows a progression from peridotite (olivine-rich) through troctolite (olivine + plagioclase) to gabbro (plagioclase + clinopyroxene).

By integrating field and geochemical observations, this study challenges the idea that Unit 9 was formed through progressive fractional crystallization of a single parental liquid. Instead, the authors hypothesise that multiple generations of rimmed clinopyroxenes with sharp boundaries in Cr2O3 and REE indicate that Unit 9 underwent two separate episodes of partial melting in response to the intrusion of hot picritic magma.

Crystal mush

Some of the processes that may occur in a cumulate pile in response to the injection of chemically distinct magmas

This upward and lateral migration of melts and the reactive remobilisation of a cumulate pile may be an important process in all layered intrusions and open magma chambers.

Leuthold J, Blundy JD, Holness MB, & Sides R (2014) ‘Successive episodes of reactive liquid flow through a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)’. Contributions to Mineralogy and Petrology, 168(1), 1-27. http://dx.doi.org/10.1007/s00410-014-1021-7

SCIENTIFIC ABSTRACT

(more…)

Advertisements

Natural cooling paths control the partitioning of REE between clinopyroxene and melt

A new study shows that substitution of aluminium for silicon in clinopyroxene tetrahedra increases during cooling. The resulting local charge balance favours REE incorporation into the crystal lattice.

A new study by Scarlato and co-workers shines the spotlight on clinopyroxenes in a trachybasaltic dyke in the Valle del Bove depression on Mt Etna, Italy.  Previous studies by Mollo et al. were able to quantify how the the cooling rate of the crystals increased from 0.02ºC/min to 1.13ºC/min from the core to rim of the dyke. The fact that the solidification path in this igneous feature was already well-constrained provided a perfect platform for this study, which explores the effect of temperature variations on the partitioning of rare earth elements (REE) between clinopyroxene and melt.

The structure of the clinopyroxene mineral consists of interlocking silicon tetrahedra, and two sites where metal cations can be incorporated (called M1 and M2). The study found that a higher cooling rate favours the substitution of tetrahedral aluminium (AlIV) for silicon. AlIV acts as a local charge balance for REE ions; as a consequence, REE are more easily accommodated into the M2 site of the mineral lattice.

Scarlato et al.’s measurements from this natural laboratory match the theoretical predictions of REE behaviour made using the ‘lattice strain model’ of Blundy & Wood (1994). This demonstrates that the REE partitioning between melt and clinopyroxene in naturally cooled magmas is controlled by local charge balance and cation substitutions, rather than kinetic parameters or diffusion.

Scarlato P, Mollo S, Blundy JD, Iezzi G, & Tiepolo M (2014) ‘The role of natural solidification paths on REE partitioning between clinopyroxene and melt’ Bulletin of Volcanology, 76(3), 1-4. http://dx.doi.org/10.1007/s00445-014-0810-1

SCIENTIFIC ABSTRACT

(more…)